

Redistributive effects of pension reforms: Who are the winner s and losers?

Miguel Sánchez-Romero^{1,3}, Philip Schuster², Alexia Prskawetz^{1,3}

¹ Institute of Statistics and Mathematical Methods in Economics, Research Unit Economics, TU Wien
 ² Office of the Austrian Fiscal Advisory Council c/o Oesterreichische Nationalbank
 ³ Wittgenstein Centre of Demography and Global Human Capital (IIASA, ÖAW, Univ. Vienna)

Denkraum 2024, 27. Februar 2024

Disclaimer: This presentation does not necessarily express the views of the Oesterreichische Nationalbank, the Eurosystem or the Austrian Fiscal Advisory Council.

Motivation

• Negative and increasing correlation between mortality rates and higher socieconomic status (SES) by occupation, education, income, and wealth (Preston and Elo 1995, Lleras-Muney 2005, Waldron 2007, Manchester and Topoleski 2008, Luy et al. 2011, Olshansky et al. 2012, Chetty et al. 2016)

► Figure by income ► Figure by education

 Heterogeneity in life expectancy by SES and its implication on pension schemes (Ayuso et al. 2016, Auerbach et al. 2017, R. D. Lee and Sánchez-Romero 2020, Palmer and Gosson de Varennes 2019, Haan et al. 2020, Holzmann et al. 2019, and Sánchez-Romero and Prskawetz 2023)

Are pension systems becoming more regressive?

Do low-SES groups subsidize pension benefits of high-SES groups?

Figure pension regressivity

• Individuals may react to changes in the pension system (Pestieau and Racionero 2016; Sánchez-Romero, R. D. Lee, et al. 2020; Sánchez-Romero and Prskawetz 2020), which may lead to unwanted results.

Study redistributive properties of pension reform over the whole lifecycle not just at time of retirement.

Part I

The model

Dynamic general equilibrium model with overlapping generations

• Households:

- Population: 500 cohorts × 25 heterogeneous agents (initial characteristics) per cohort
- Control variables: Consumption (c), labor supply (l), and education (e)
- State variables: Financial wealth (k), pension points (pp), human capital (h)

• Firm:

- Demands K, L using a Cobb-Douglas technology and produces the final good

• Government:

- Provides public goods and services, collects taxes, and runs the pension system

Household head problem

• Agent's timeline:

A general framework to model pension systems I/II

Pension benefit (b): •

$$b_{a} = \max\left\{pp_{a} \cdot \boldsymbol{\varphi}(pp_{a}) \cdot \lambda_{a}, b^{\min}\right\} \cdot \rho \tag{1}$$

Pension repl. rate Adjustment factors Minimum pen. ben.

 $\varphi(pp_{\alpha}) = \varphi$ (with $\varphi = 0.80$ in the benchmark) λ_{α} corrects for years worked and retirement age $b^{\min} = \varphi(pp^{\min}) \cdot pp^{\min}$ Sustainability factor $\begin{cases} \rho = 1 \text{ and } 0.70S = \tau^{s} wL & \text{if } \tau^{s} < \overline{\tau^{s}}, \\ \rho < 1 \text{ and } 0.70S = \overline{\tau^{s}} wL & \text{if } \tau^{s} \ge \overline{\tau^{s}}. \end{cases}$

A general framework to model pension systems II/II

• Pension points (pp) dynamics

$$pp_{a+1} = [\alpha_J(l_a) + (1 - \alpha_J(l_a))\mathcal{R}_a] pp_a + \phi^p(n) PBI(y_a; \mathbf{p}_a),$$
Capitalization index
Fraction retired
$$\mathcal{R}_a = (1 + i_a)/\overline{\pi}_a$$
Fraction retired
$$\alpha_J(l_a) = \max(0, 1 - l_a/\overline{L}) \text{ for } a \ge \underline{J}$$
Accrual rate
$$\phi^p(n) = \frac{1.00}{n}$$
Pensionable income
$$\mathbf{p}_a = \{(p_1, p_2, \dots, p_n) \in \mathbb{R}^n_+ : p_1 > p_2 > \dots > p_n\}$$
Pension base increment
$$PBI(y_a; \mathbf{p}_a) = \max\{y_a - p_n, 0\}$$

Population

- Historical and projected Austrian demography (from XIX century on)
- Exogenous differences in mortality and fertility (consistent with the pop. structure)

Education level, e	Primary	Secondary	College
Highest learning ability	0	+3.5	+5
Average learning ability	-5	-1.5	O (Ref.)
Lowest learning ability	-10	-6.5	-5

Table: Fixed differences in life expectancy at age 15 by educational attainment and learning ability level. Note: Differences based on Goujon et al. 2016, Chetty et al. 2016, and Murtin et al. 2022.

- Each cohort is comprised of $\mathcal{N} = 25$ different representative agents that differ in terms of their permanent unobservable characteristics: i) innate learning ability (ξ_n) and ii) schooling effort (θ_n).
- Unobservable characteristics calibrated (using Bayesian melding) to replicate the historical evolution of the educational transition in Austria Figure Parametrization/Calibration

Part II

Policy analysis

Pension reforms

Pension system	Pension rule							
	Working years	Retirement age	Replacement rate	Soc. contr. rate				
	wy	JN	φ					
Reform 0: Benchmark or status quo	45	65	80%	$\tau_{\rm S}$				
Reform 1: Sustainability factor (SF)	-	-	-	$\overline{ au}_{S} \leq$ 22%				
Reform 2: SF + Delayed retirement age	50	70	80%	$\overline{ au}_{S} \leq$ 22%				
Reform 3: SF + Same work length	45		80%	$\overline{ au}_{S} \leq$ 22%				
Reform 4: SF + Ayuso-Bravo-Holzmann (ABH) proposal	-	-	80%	$\overline{ au}_{S} \leq$ 22%				
Reform 5: SF + Sanchez-Prskawetz (SP) proposal†	-	-	$80\% + \nu \frac{\overline{pp} - pp}{pp}$	$\overline{ au}_{S} \leq$ 22%				
Reform 6: SF + Front-loading	-	-	$100\% \cdot e^{-1\%(a-J)}$	$\overline{ au}_{S} \leq$ 22%				

$$\dagger \nu = \frac{\text{LE}(pp^{max}) - \text{LE}(pp^{min})}{\text{LE}(pp^{max})} / \frac{pp^{max} - pp^{min}}{pp^{max}} .$$

Parametric components

Macroeconomic impact

Figure: Macroeconomic impact of pension reforms (mean values)

Cohort groups

Cohort group	•			•••
Group a. Low learning ability- high schooling effort	Less than high school	Early entrance Early retirement Longer than the avg. working life	Life expectancy 5 years lower than the average	Lifetime consumption 50% lower than that of the average worker
Group d. High learning ability- low schooling effort	University	Late entrance Late retirement Shorter than the avg. working life	Life expectancy 3 years higher than the average	Lifetime consumption 200% higher than that of the average worker

Redistributive effects: Internal rate of return (IRR)

DEFINITION: the IRR is the expected rate of return received from contributing to the pension system

(a) Birth cohort 1980

(b) Birth cohort 2020

Notes: (Group.a) low learning ability and high schooling effort, (Group.d) high learning ability and low schooling effort

Impact on labor supply: Years worked

(c) Birth cohort 1980

(d) Birth cohort 2020

Notes: (Group.a) low learning ability and high schooling effort, (Group.d) high learning ability and low schooling effort

Impact on welfare: Veil of ignorance

DEFINITION: the percentage change in the baseline consumption path that makes the expected lifetime utility in the status quo equal to the expected lifetime utility in the pension reform

(e) Birth cohort 1980

(f) Birth cohort 2020

Notes: (Group.a) low learning ability and high schooling effort, (Group.d) high learning ability and low schooling effort

Main conclusions

• In a non-progressive PAYG pension system that is almost actuarially fair, we obtain

- 1 agents with high SES receive a higher IRR than those with low SES
- 2 population ageing will lead to a decline in the IRR for all SES groups
- 3 despite the decline in IRR, highly-educated workers will continue receiving an IRR that doubles that of low-educated workers
- Pension reforms:
 No one-size-fits-all solution

Main conclusions

Pension system	Pros	Cons
Reform 1: Sustainability factor (SF)	Pension sustainability; Labor sup- ply; Lower inequality in labor, IRR, and welfare	Lower IRR
Reform 2: SF + Delayed retirement age	Pension sustainability; Labor sup- ply; Economic growth; Birth cohort 2020	Highest inequality in labor, IRR, and welfare; Birth cohort 1980
Reform 3: SF + Same work length	Lower inequality in labor; Birth co- hort 2020	Labor supply; Economic growth; short labor histories; Birth cohort 1980
Reform 4: SF + ABH proposal	Less inequality in labor, IRR, and welfare; Short-lived and poorer worker	Labor supply; Education; Eco- nomic growth; Long-lived and richer worker
Reform 5: SF + SP proposal	Less inequality in labor, IRR, and welfare; Short-lived and poorer worker	Labor supply; Education; Eco- nomic growth; Long-lived and richer worker
Reform 6: SF + Front-loading	Higher IRR; Birth cohort 1980	Labor supply; Economic growth; More inequality in labor, IRR, and welfare

Acknowledgements

This project has received funding from the Austrian National Bank (OeNB) under Grant no. 17647. and Grant no. 18744.

We thank the editor and two anonymous referees for their comments and suggestions. We also thank Stefani Rivic for collecting historical data for Austria, Bernhard Hammer for sharing NTA data for Austria, Yuliya Kulikova, Zsofia Barany, Hippolyte D'Albis, Johannes Schünemann, Holger Strulik and participants at Viennese Vintage Workshop 2019: "Heterogeneous Dynamic Models of Economic and Population Systems", the Fiscal Policy Modelling Workshop of the European Commission, NOeG 2020, the European Population Conference 2022, Paris School of Economics, and the University of Göttingen for giving us comments that helped us improving the paper.

wittgensteincentre.org dataexplorer.wittgensteincentre.org published in Journal of Pension Economics and Finance doi:10.1017/S147474722300015X

wittgensteincentre.org dataexplorer.wittgensteincentre.org

Unequal life expectancy (LE) by socioeconomic status (income)

Years of life expectancy at age 65

Figure: Cohort life expectancy at age 65 (and 95 percent confidence intervals) for US male Social Security-covered workers, by selected birth years and earnings group *Source*: Waldron (2007)

Unequal life expectancy (LE) by socioeconomic status (education)

Figure: Life expectancy gap between the highest and the lowest educational groups at the age of 25. *Source*: Murtin et al. (2021)

Are pension systems becoming more regressive?

Figure: Average total lifetime net benefits at age 50 for males (present value in thousands of dollars). by lifetime earnings quintile. Source: National Academy of Sciences, Engineering, and Medicine (2015). The Growing Gap in Life Expectancey by Income: Implications for Federal Programs and Policy Responses.

Parametrization/Calibration

Model fit

- First-stage: Parameter values on human capital and preferences using the literature
- **Second-stage**: Evolution of the educational attainment

\rightarrow

Permanent unobserved heterogeneity, which is the same across cohorts, and is estimated using the Bayesian Melding Method with the IMIS algorithm

Bacl

Calibration: Characteristics of the educational groups

Negative selection

- Primary educated agents: Younger cohorts → More homogeneous with higher effort of schooling (trapped)
- College educated agents: Younger cohorts → More heterogeneous

Effective Tax on Labor

Figure: Age profile of the difference in the effective tax on labor between the pension reforms and the status quo. Birth cohort 2020. *Source: Authors' calculations using the model. Notes: Each panel shows the average value for each simulation across the 200 models.*

1 Sustainability factor (SF

SF + Delayed retirement

3. SF + Same work length 4. SF + ABH proposal 5. SF + SP proposal 6. SF + Front loading

Household problem (FOCs)

The first-order conditions (FOCs) of this problem are:

$$U_c(c_{a,e,n}, l_{a,e,n}) = \beta \pi_{a+1,e,n} \frac{\partial V(\mathbf{x}_{a+1,e,n})}{\partial k_{a+1,e,n}} (1 + \tau_a^c),$$
⁽²⁾

$$-U_l(c_{a,e,n}, l_{a,e,n}) = U_c(c_{a,e,n}, l_{a,e,n}) \left(1 - \tau_{a,e,n}^L\right) w_{a,e,n},$$
(3)

where $\tau_{a,e,n}^L = \frac{\tau_a^C + \tau_a^L + \tau_{a,e,n}^S + \tau_{a,e}^J - (-\alpha'_J(l_a,e,n))}{1 + \tau_a^C}$ is the effective labor income tax. Notice that the effective labor income tax includes the effective social security tax rate at the intensive margin, denoted by $\tau_{a,e,n}^S$, and the retirement tax/subsidy rate, denoted by $\tau_{a,e,n}^J$, which are given by

$$\tau_{a,e,n}^{S} = \tau_{a}^{S}(1 - \tau_{a}^{l}) - \mathcal{P}_{a+1,e,n}\phi^{P}\mathsf{PBI}'(y_{a,e,n}),\tag{4}$$

$$\tau_{a,e,n}^{j} = (1 - \tau_{a}^{l}) \left(1 + \varepsilon_{b,\alpha_{J},e,n} \right) \frac{b_{a,e,n}}{w_{a,e,n}} - (\mathcal{R}_{a} - 1) \frac{\mathsf{pp}_{a,e,n}\mathcal{P}_{a+1,e}}{w_{a,e,n}}.$$
(5)

The term $\varepsilon_{b,\alpha_J,e,n}$ is the retirement-elasticity of pension benefit; i.e. $\frac{1}{b_{a,e,n}} \frac{\partial b_{a,e,n}}{\partial \partial_{a,e,n}} \frac{\alpha_J(l_{a,e,n})}{\alpha'_J(l_{a,e,n})}$. Eqs. (4)-(5) coincide with the effective social security tax rate and the retirement tax/subsidy rate in Sánchez-Romero, Lee, and Prskawetz (2020).

Household problem (ECs)

The envelope conditions (ECs) imply that:

(Euler condition)

(Value of pension points)

(Value of human capital)

$$U_c(c_{a,e,n}, l_{a,e,n}) = R_{a+1,e,n} \beta \pi_{a+1,e,n} \frac{1 + \tau_a^c}{1 + \tau_{a+1}^c} U_c(c_{a+1,e,n}, l_{a+1,e,n}),$$
(6)

$$R_{a,e,n}\mathcal{P}_{a,e,n} = (1 - \tau_a^l) \frac{\partial b_{a,e,n}}{\partial p p_{a,e,n}} \alpha_J(l_{a,e,n}) + \mathcal{P}_{a+1,e,n} \frac{\partial p p_{a+1,e,n}}{\partial p p_{a,e,n}},$$
(7)

$$R_{a,e,n}\mathcal{H}_{a,e,n} = \left(1 - \tau_a^l - \tau_{a,e,n}^S\right)\frac{y_{a,e,n}}{h_{a,e,n}} + \mathcal{H}_{a+1,e,n}\frac{\partial h_{a+1,e,n}}{\partial h_{a,e,n}},\tag{8}$$

Austrian demography

Figure: Simulated average vital rates by educational attainment for birth cohorts born between 1800 and 2100 in Austria: Primary or less (black), secondary (dark gray), and college (light gray).

Source: Differences in life expectancy and in total fertility rate across the educational groups are based on assumptions taken from Goujon et al. 2016. The average life expectancy and the total fertility rate across educational groups are based on historical reconstructions of the Austrian population done by the authors using data from Rivic 2019. *Notes*: Panel A shows the life expectancy at birth by educational attainment. Panel B shows the total fertility rate (TFR) by educational attainment.

Impact of pension reforms on consumption

Table: Impact of pension reforms on lifetime consumption relative to the average of the same birth cohort in the status quo (Average=100)

Cohort	Learning ability &				Absolute difference with respect to reform 1 . (the sustainability factor, SE)				ect to or .SE)
	schooling effort	Bench.	SF			Pensi	on reforr	n (P.R.)	.,,
	$oldsymbol{\xi}-oldsymbol{\eta}$	О.	1.	(1 .) – (0 .)	2.	3.	4.	5.	6.
	1. low-high	54.07	54.15	0.08	-0.97	-1.12	-0.41	-1.88	0.45
1090	2. low-low	64.68	64.81	O.13	-1.03	-1.35	-0.65	-1.79	0.44
1980	3. high-high	107.56	107.74	O.18	-2.35	-2.04	-2.34	-3.86	0.84
	4. high-low	200.13	199.70	-0.43	-4.46	-8.25	-11.59	-15.59	1.83
	1. low-high	55.24	55.06	-0.18	3.03	-0.01	0.30	0.03	-0.07
2020	2. low-low	65.59	65.36	-0.23	4.07	0.02	0.12	-0.60	0.20
2020	3. high-high	107.77	107.06	-0.71	5.63	0.27	-1.19	-2.54	0.24
	4. high-low	196.79	194.68	-2.11	12.44	2.04	-6.95	-10.72	2.27

Notes: '**low**' means lower than the median and '**high**' means higher than the median. **0.** Benchmark (status quo), **1.** Sustainability factor (SF), **2.** SF+Delayed retirement, **3.** SF+Same work length, **4.** SF+ABH proposal, **5.** SF+SP proposal, **6.** SF+Front loading.

Impact of pension reforms on education

Table: Impact of pension reforms on the additional years of schooling by unobservable characteristics (in years)

Cohort	Learning ability &				Absolute difference with respect to reform 1 . (the sustainability factor, SF)				
	schooling effort	Bench.	SF			Pensi	on reforr	n (P.R.)	
	$oldsymbol{\xi}-oldsymbol{\eta}$	О.	1.	(1 .) – (0 .)	2.	3.	4.	5.	6.
1980	1. low-high	0.50	0.50	0.00	0.00	0.00	-0.01	-0.09	0.00
1980	2. low-low	4.21	4.22	0.01	0.00	-0.20	-0.05	-0.26	-0.04
1980	3. high-high	3.79	3.79	0.00	0.00	0.00	0.00	-0.01	0.00
1980	4. high-low	7.54	7.51	-0.03	0.00	-0.36	-0.42	-0.60	0.02
2020	1. low-high	0.53	0.53	0.00	0.01	0.00	-0.02	-0.02	0.00
2020	2. low-low	4.32	4.31	-0.01	0.12	-0.15	0.01	-0.06	0.08
2020	3. high-high	3.80	3.80	0.00	0.02	0.01	-0.02	-0.02	0.01
2020	4. high-low	7.57	7.56	-0.01	0.06	0.02	-0.19	-0.40	0.04

Notes: 'low' means lower than the median and 'high' means higher than the median. **0.** Benchmark (status quo), **1.** Sustainability factor (SF), **2.** SF+Delayed retirement, **3.** SF+Same work length, **4.** SF+ABH proposal, **5.** SF+SP proposal, **6.** SF+Front loading.

Impact of pension reforms on retirement

Cohort	Learning ability &				Absolute difference with respect to reform 1 . (the sustainability factor, SF)			ect to tor, SF)	
	schooling effort	Bench.	SF			Pensi	on reforr	n (P.R.)	
	$oldsymbol{\xi}-oldsymbol{\eta}$	О.	1.	(1 .) – (0 .)	2.	3.	4.	5.	6.
	1. low-high	58.12	58.12	0.00	2.40	-0.25	-0.07	-0.10	-0.11
1090	2. low-low	58.66	58.68	0.02	2.11	0.12	-0.19	-0.43	-0.40
1900	3. high-high	58.59	58.59	0.00	2.11	0.07	0.04	0.06	-0.35
	4. high-low	59.70	59.71	0.01	1.73	0.43	0.12	0.32	-0.46
	1. low-high	58.15	58.36	0.21	2.25	-0.38	-0.20	-0.28	-0.25
2020	2. low-low	58.81	59.25	0.44	1.76	-0.02	-0.36	-0.65	-0.41
	3. high-high	58.90	59.28	O.38	1.74	-0.05	-0.07	-0.12	-0.38
	4. high-low	60.31	60.78	0.47	1.36	-0.17	0.07	0.20	-0.44

Table: Impact of pension reforms on the retirement age (in years)

Notes: '**low**' means lower than the median and '**high**' means higher than the median. **0.** Benchmark (status quo), **1.** Sustainability factor (SF), **2.** SF+Delayed retirement, **3.** SF+Same work length, **4.** SF+ABH proposal, **5.** SF+SP proposal, **6.** SF+Front loading.

Frame Title

Parameter	Symbol	Value	Parameter	Symbol	Value
Preferences			Human capital		
Marginal schooling cost†	$[\overline{\eta}, \eta]$	[0,40]	Learning ability†	[<u>ξ</u> , <u>ξ]</u>	[0.00,0.30]
Labor elasticity	σ_L^-	0.40	Initial human capital	$h_{\underline{a}}^{-}$	1.00
Labor weight	α_L	866.28	Returns to education	γ_h	0.65
Max. labor supply before retirement	Ĺ	O.4	Experience		
Leisure in retirement	Vo	77.0552	Age	β_1	0.070
	V_1	-1.9425	Age-squared	β_2	0.00092
Subjective discount factor	β	1.02			
			Production		
			Capital depreciation rate	δ_K	0.05
			Capital share	α_Y	0.375
			Productivity growth rate	$\mathcal{G}^{\mathcal{A}}_t$	see Fig. ??

Table: Model parameters

† Parameter calibrated using the Bayesian melding method.

Unobservable characteristics

Figure: Correlation matrix of the initial endowments ϑ for the $\mathcal{N} = 25$ agents of each cohort. *Notes*: Dots represent the initial endowments of the most likely set of parameters obtained from the posterior distribution. Back

Parametric components of the pension systems

Table 3. Parametric reforms of the pension system

			Pension reform						
Parameter	Benchmark Symbol (status quo)	Benchmark (status quo)	(1) Sustainability factor	(2) Delayed retirement	(3) Same work length	(4) ABH proposal	(5) SP proposal	(6) Front loading	
Pension benefits	bo	$\max (\lambda_a \varphi(pp_a)pp_a)$	b ^{min})p						
Working years (full pension)	wy	45	-	50	-	-	-	-	
Pension points	ppa	$pp_{\alpha+1} = [\alpha_J(l_\alpha) + (l_\alpha)]$	$1 - \alpha_j(l_a))\mathcal{R}_a]pp_a +$	<pre> \$\$ PBI(y₀) </pre>					
Capitalization index	\mathcal{R}_{q}	Growth rate of the	total wage bill						
Pensionable income years	n	wy							
Accrual rate	dP.	1/n							
Pensionable income	P.	$p_n = \{(p_1, \dots, p_n)\}$	$\in \mathbb{R}^{n}$: $p_{1} \ge \cdots \ge p$	p_{a} (with $p_{a+1} = [$	$\alpha_1(l_s) + (1 - \alpha_1(l_s))$	$(\mathcal{R}_{n} \rho_{n})$			
Pension base increase	PBI(y _o)	$\max (y_0 - p_n, 0)$ (if	$y_a > p_n$ replace p_n for	or y_a in p_a)					
Proportion of people retired	$\alpha_j(l_o)$	$\begin{cases} 1 - l_a / \overline{L} & \text{if } a \ge \frac{1}{2} \\ 0 & \text{otherw} \end{cases}$! ise						
Minimum retirement	1	62	-	67	59	-		-	
Normal retirement	J ^N	65	-	70	NA	-	-	-	
Late retirement age	3	68	-	73	NA	-	-	-	
Replacement rate	$\varphi(pp_{a})$	0.80	-	-	-	0.80 LE(pp.)	$0.80 + \nu \frac{\overline{pp_a} - pp_a}{pp_a}$	1.0	
Pension adjustment	λ _o	$\sum_{i=1}^{q-1} (\lambda^{\vec{n}})^{q-1-i} \lambda^{yc}_i \lambda^{y$	$\int_{0}^{\infty} \frac{\Delta t_{i+1}}{T_{i+1}} \text{ with } \lambda_{i} = 0$						
factor Years contributed	$\lambda_i^{pc} = 1 + \phi^{pc} f(yc_j + (i - \underline{J}) - wy)$ with $yc_{i+1} = yc_i + (l_i/\overline{L})$	$\phi^{yc} = 1/wy$ f(x) = x	-	-	$\phi^{\rm yc} = 3.3/{\rm wy}$	-	-	-	
Retirement age	$\lambda_{i}^{co} = \begin{cases} 1 - \operatorname{pen}(J^N - i) & \text{if } J \leq i \leq J^N \\ 1 + \operatorname{pen}(i - I^0) & \text{if } N \leq i \leq J^N \end{cases}$	pen = 0.051	-	-	min(0, x) pen = 0.0 rew = 0.0	-	-	-	
Front loading	$a^n = (1 - c)$	r. = 006	_	-	1011 = 0.0			r. = 104	
Minimum pention	hmin	namin 1 P	-	-	-	-	-	- x70	
Participant perision	<i>v</i>	$pp = \frac{1}{0.83}$					-		
Sustainability factor	ρ	1.0	≤ 1.0	≤ 1.0	≤ 1.0	≤ 1.0	≤ 1.0	≤ 1.0	

Notes: - Same value as in the benchmark.